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Mstraat : Unusual degeneracies of the HUckel s- molecular 
orbitals in some molecular frameworks is explained on the 
basis of the molecular graph decomposition. 

n-orbital degeneracies higher than those predicted on the basis of 
the molecular point group in certain special molecular frameworks has 
been analysed in a recent Letter'. Here we delineate the origin of 
these unusual degeneracies; we note that, these degeneracies in the 
eigenvalue spectrum arise due to the particular molecular graph 
connectivity and will be seen only at the simple Hilckel level of theory. 

We consider graphs 1 and 2 as prototypes for the following 
discussion. As usual2 the connectivity of the vertices represent the 

carbon 2ps -orbital adjacencies for the HUckel treatment (usual HMO 
treatment is not applicable to 2; it is considered here only for the 
graph theoretical discussion). Roth graphs show 5-fold degeneracy in 
the eigenvalues 0.618 and -1.618 on diagonalisation of the unweighted 
adjacency matrix. If r represents the number of rings around the 
central atom, both have (2r-l)-fold degeneracy as pointed out for 1 and 
several similar systems in Ref.1. However it may be noted that non- 
bonding orbitals do not contribute to the (zr-1) value as mentioned in 
Ref.1. Further, the application of the proof given in Ref.1 to systems 
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like 2 (and I, here as well as in Ref.1) is not clear. On the contrary, 
the approach of Dias3, incrementing the degeneracies of a chosen 
eigenvalue (in this case, 0.618 or equivalently -1.618) by adding rings 
(5-rings) to an initial graph (3 or 4) leading to the required graph (1 
or 2) suggests a more general basis for the formulation, 2r-1. 

3 and 4 have a non-degenerate level at 0.618 which corresponds to 
one of the degenerate pair at 0.618 in the 5-ring that was left 
unperturbed by the substitution. Addition of another 5-ring at vertex 
1 (a nodal vertex for this eigenvalue) of 3 or 4 adds two levels of 
eigenvalue 0.618. If thus r-l rings are added around the central 
vertex, the final degeneracy of the eigenvalue 0.618 is l+Z(r.-1) = 2r-1. 
This explains the (2r-l)-fold degeneracy of both 1 and 2. Same approach 
can be extended to all other systems treated in Ref.1. 

However, this approach raises two important questions. First, what 
is the basis for the propagation of these degeneracies? Second, does 
the addition of a similar ring (5-ring) at any of the nodal verices (1 
or 2) corresponding to a particular eigenvalue (0.618) of a perturbed 
ring (4) lead to similar propagation of its degeneracy ? If not why ? 
5 has 3-fold and 6 only l-fold degeneracy in the eigenvalue 0.618; so 
the answer to the second question is in the negative. 

Inspection of several graphs shows that when an n-ring (with 
sufficient symmetry to have a l-fold degenerate level) is attached to a 
vertex which is already directly connected to a similar n-ring, the 
degeneracy of the relevant level increases by 2; if connected to a 
different vertex, degeneracy increases by one only. The reason for this 
becomes transparent, if one looks at the resolution of the secular 
polynomial of the graph into the secular polynomials of its subgraphs 
according to Heilbronner's procedure4. The following relation was 
presented by Heilbronner for the secular polynomial, PS(x) of acyclic 
graphs and cyclic graphs with no fused rings (x is a dummy variable) 

PS(X) = PS_e(x) - PG-(e)(x) 



where G, G-e and G-(e) represent respectively the graph, its subgraph 

with one edge, e deleted and the subgraph with the vertices connected by 

e and their incident edges deleted. Gutman et. a1.5 have shown that a 
similar relationship holds for the acyclic polynomial of any graph. 
From this we infer that the Heilbronner relation can be generalised to 
all graph decompositions in which the number of cycles in G and G-e are 
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the same. Hence it may be applied to the graphs considered here. 
If G-e and G-(e) are n- and m-fold degenerate respectively 

eigenvalue A*, then 

PG_e(x) = (x - l*)".P,(x); PG-(e)(x) = (x - A*)m.P2(x) 

Hence, for the case n ( m, 

PG(X) = (x : x*)n.[PI(x) - (x - A*)m-n.P2(x)] 

in the 

Therefore it is seen that G will be n (or m) -fold degenerate in A* if 
n c m (or m 6 n). The case of 5 and 6 can be illustrated as follows. 

P5(X) = P7(X) - P*(x): p6(x) = p9(x) - p8(x) 

where 7, 6 and 9 are the appropriate subgraphs. 
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in the eigenvalue D.618, since 7 is 3-fold and 8 is cl-fold degenerate 
respectively in the same eigenvalue. 6 is only l-fold degenerate, since 
9 also has only l-fold degeneracy. (Note, trivially, that a graph will 
be (n+m)-fold degenerate in a particular eigenvalue, if it has two 
disconnected components of degeneracy n and m in the same eigenvalue). 

Thus the answer to the questions above, may be summarized as shown 
in Scheme 1. For each graph, the number in parenthesis indicates the 
degeneracy of the eigenvalue 0.618. The single arrows represent the 
Dias-type propagation of graphs where the degeneracy increases by 2 and 
the double-line arrow indicates the case where it increases by 1. 

In conclusion, it is seen that degeneracies in molecular graph 
spectra can be propagated by appropriate extension of the molecular 
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framework, and the basis for it can be understood in terms of the 
Heifbronner graph decomposition formula. 
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